Как решить методом гаусса слау (систему линейных уровнений). правила, примеры

Метод Гаусса онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Гаусса. Дается подробное решение. Для вычисления выбирайте количество переменных и количество уравнений. Затем введите данные в ячейки и нажимайте на кнопку “Вычислить.”

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Гаусса − это метод перехода от исходной системы линейных уравнений (при помощи эквивалентных преобразований) к системе, которая решается проще, чем исходная система.

Эквивалентными преобразованиями системы линейных уравнений являются:

  • перемена местами двух уравнений в системе,
  • умножение какого-либо уравнения в системе на ненулевое действительное число,
  • прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Рассмотрим систему линейных уравнений:

(1)

Запишем систему (1) в матричном виде:

где

(3)

A-называется матрица коэффициентов системы, b − правая часть ограничений, x− вектор переменных, которую нужно найти. Пусть rang(A)=p.

Эквивалентные преобразования не меняют ранг матрицы коэффициентов и ранг расширеннной матрицы системы. Не меняется также множество решений системы при эквивалентных преобразованиях. Суть метода Гаусса заключается в приведении матрцы коэффициентов A к диагональному или ступенчатому.

Построим расшренную матрицу системы:

(4)

Предположим a11≠0. Если это не так, то можно поменять местами эту строку со строкой с ненулевым элементом в столбце 1 (если нет таких строк, то переходим к следующему столбцу).

Обнуляем все элементы столбца 1 ниже ведущего элемента a11. Для этого сложим строки 2,3, … m со строкой 1, умноженной на −a21/a11, −a31/a11, …

, −am1/a11, соответственно. Тогда (4) примет следующий вид:

(5)

На следующем этапе обнуляем все элементы столбца 2, ниже элемента. Если данный элемент нулевой, то эту строку меняем местами со строкой, лежащий ниже данной строки и имеющий ненулевой элемент во втором столбце.

Далее обнуляем все элементы столбца 2 ниже ведущего элемента a22. Для этого сложим строки 3, … m со строкой 2, умноженной на −a32/a22, …, −am2/a22, соответственно.

Продолжая процедуру, получим матрицу диагонального или ступенчатого вида. Пусть полученная расширенная матрица имеет вид:

(6)

Обратим внимание на последние строки. Если,…,равны нулю, то система линейных уравнений имеет решение, если же хотя бы один из этих чисел отлично от нуля, то система несовместна. Иными словами, система (2) совместна тогда и только тогда, когда ранг матрицы A навен рангу расширенной матрицы (A|b).

Пусть. Тогда

(7)

Так как rangA=rang(A|b), то множество решений (7) есть (n−p)− многообразие. Следовательно n−p неизвестныхможно выбрать произвольно. Остальные неизвестныеиз системы (7) вычисляются так.

Из последнего уравнения выражаем xp через остальные переменные и вставляем в предыдущие выражения. Далее из предпоследнего уравнения выражаем xp−1 через остальные переменные и вставляем в предыдущие выражения и т.д.

Рассмотрим метод Гаусса на конкретных примерах.

Пример 1. Найти общее решение системы линейных уравнений методом Гаусса:

Матричный вид записи: Ax=b, где

Для решения системы, запишем расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строки 2,3 со строкой 1, умноженной на -2/3,-1/2 соответственно:

Обратите внимание

Исключим элементы 2-го столбца матрицы ниже элемента a2 2. Для этого сложим строку 3 со строкой 2, умноженной на 9/8:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Из вышеизложенной таблицы можно записать:

Подставив верхние выражения в нижние, получим решение.

Решение:

,,.

Пример 2. Найти общее решение системы линейных уравнений методом Гаусса:

Матричный вид записи: Ax=b, где

Для решения системы, построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/5,-6/5 соответственно:

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на -1:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Выразим переменные x1, x2 относительно остальных переменных.

где x3, x4− произвольные действительные числа.

Подставив верхние выражения в нижние, получим решение.

Решение:

где x3, x4− произвольные действительные числа.

Векторный вариант решения:

Запишем вышеизложенное решение, представив свободные переменные в виде тождеств:

Тогда векторное решение можно представить так:

где x3, x4− произвольные действительные числа.

Источник: https://matworld.ru/calculator/gauss-method-online.php

Решение систем линейных уравнений методом Гаусса

 

Метод Гаусса — классический метод решения системы линейных алгебраических уравнений (СЛАУ).Рассмотрим систему линейных уравнений с действительными постоянными коэффициентами:
или в матричной форме

Метод Гаусса решения системы линейных уравнений включает в себя 2 стадии:

  • последовательное (прямое) исключение;
  • обратная подстановка.

Последовательное исключение

Исключения Гаусса основаны на идее последовательного исключения переменных по одной до тех пор, пока не останется только одно уравнение с одной переменной в левой части. Затем это уравнение решается относительно единственной переменной. Таким образом, систему уравнений приводят к треугольной (ступенчатой) форме.

Для этого среди элементов первого столбца матрицы выбирают ненулевой (а чаще максимальный) элемент и перемещают его на крайнее верхнее положение перестановкой строк. Затем нормируют все уравнения, разделив его на коэффициент ai1, где i– номер столбца.

Затем вычитают получившуюся после перестановки первую строку из остальных строк:

Получают новую систему уравнений, в которой заменены соответствующие коэффициенты.После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают указанный процесс для всех последующих уравнений пока не останется уравнение с одной неизвестной:

Обратная подстановка

Обратная подстановка предполагает подстановку полученного на предыдущем шаге значения переменной xn в предыдущие уравнения:
Эта процедура повторяется для всех оставшихся решений:

Иллюстрирующий пример

Пусть дана система уравнений
или в матричной форме

Выбираем строку с максимальным коэффициентом ai1 и меняем ее с первой.

Нормируем уравнения относительно коэффициента при x1:

Вычитаем 1 уравнение из 2 и 3:
Выбираем строку с наибольшим коэффициентом при ai2 (уравнение 1 не рассматривается) и перемещаем ее на место 2.

Нормируем 2 и 3 уравнения относительно коэффициента при x2

Вычитаем уравнение 2 из 3

Нормируем уравнение 3 относительно коэффициента при x3

Откуда получаем x3=2. Подставляем полученное значение в уравнения 2 и 1 получаем

Подставляя полученное значение x2=5 в уравнение 1, найдем
Таким образом, решением системы уравнений будет вектор
Реализация на C++
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108

109

#include 
using namespace std;
// Вывод системы уравнений
void sysout(double **a, double *y, int n){

  for (int i = 0; i 

Источник: https://prog-cpp.ru/gauss/

Метод Гаусса для решения систем линейных уравнений (стр. 1 из 2)

1. Система линейных алгебраических уравнений

1.1 Понятие системы линейных алгебраических уравнений

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Системой линейных алгебраических уравнений (далее – СЛАУ), содержащей m уравнений и n неизвестных, называется система вида:

где числа aij называются коэффициентами системы, числа bi – свободными членами, aij и bi (i=1,…, m; b=1,…, n) представляют собой некоторые известные числа, а x1 ,…, xn – неизвестные.

В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент. Подлежат нахождению числа xn . Такую систему удобно записывать в компактной матричной форме: AX=B.

Здесь А – матрица коэффициентов системы, называемая основной матрицей;

– вектор-столбец из неизвестных xj.

– вектор-столбец из свободных членов bi.

Важно

Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов

1.2 Решение системы линейных алгебраических уравнений

Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Решением системы называется n значений неизвестных х1=c1, x2=c2,…, xn=cn, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записать в виде матрицы-столбца

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Важно

Решить систему – это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Преобразование, применение которого превращает систему в новую систему, эквивалентную исходной, называется эквивалентным или равносильным преобразованием.

Примерами эквивалентных преобразований могут служить следующие преобразования: перестановка местами двух уравнений системы, перестановка местами двух неизвестных вместе с коэффициентами у всех уравнений, умножение обеих частей какого-либо уравнения системы на отличное от нуля число.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

Однородная система всегда совместна, так как x1=x2=x3=…=xn=0 является решением системы. Это решение называется нулевым или тривиальным.

2. Метод исключения Гаусса

2.1 Сущность метода исключения Гаусса

Классическим методом решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных – метод Гаусса (его еще называют методом гауссовых исключений).

Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Процесс решения по методу Гаусса состоит из двух этапов: прямой и обратный ходы.

1. Прямой ход.

Совет

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна.

А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним.

Читайте также:  Методы запоминания дат по истории: способы как запомнить исторические даты

После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид:

,

где

Коэффициенты aii называются главными (ведущими) элементами системы.

1-й шаг.

Будем считать, что элемент(если a11=0, переставим строки матрицы так, чтобы a 11 не был равен 0. Это всегда возможно, т. к. в противном случае матрица содержит нулевой столбец, ее определитель равен нулю и система несовместна).

Преобразуем систему, исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы).

Для этого умножим обе части первого уравнения наи сложим почленно со вторым уравнением системы (или из второго уравнения почленно вычтем первое, умноженное на).

Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы (или из третьего почленно вычтем первое, помноженное на). Таким образом, последовательно умножаем первую строку на числои прибавляем к i -й строке, для i= 2, 3, …, n.

Продолжая этот процесс, получим эквивалентную систему:

Обратите внимание

Здесь– новые значения коэффициентов при неизвестных и свободные члены в последних m-1 уравнениях системы, которые определяются формулами:

Таким образом, на первом шаге уничтожаются все коэффициенты, лежащие под первым ведущим элементом a110, на втором шаге уничтожаются элементы, лежащие под вторым ведущим элементом а22 (1) (если a22 (1)0) и т.д. Продолжая этот процесс и дальше, мы, наконец, на (m-1) шаге приведем исходную систему к треугольной системе.

Если в процессе приведения системы к ступенчатому виду появятся нулевые уравнения, т.е. равенства вида 0=0, их отбрасывают. Если же появится уравнение видато это свидетельствует о несовместности системы.

На этом прямой ход метода Гаусса заканчивается.

2. Обратный ход.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений.

Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (она в нем всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Примечание: на практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11).

2.2 Примеры решения СЛАУ методом Гаусса

В данном разделе на трех различных примерах покажем, как методом Гаусса можно решить СЛАУ.

Пример 1. Решить СЛАУ 3-го порядка.

Обнулим коэффициенты приво второй и третьей строчках. Для этого домножим их на 2/3 и 1 соответственно и сложим с первой строкой:

Источник: http://MirZnanii.com/a/313889/metod-gaussa-dlya-resheniya-sistem-lineynykh-uravneniy

Метод Гаусса для решения матриц. Решение системы линейных уравнений методом Гаусса :

Еще с начала XVI-XVIII веков математики усиленно начали изучать функции, благодаря которым так много в нашей жизни изменилось. Компьютерная техника без этих знаний просто не существовала бы.

Для решения сложных задач, линейных уравнений и функций были созданы различные концепции, теоремы и методики решения. Одним из таких универсальных и рациональных способов и методик решения линейных уравнений и их систем стал и метод Гаусса.

Матрицы, их ранг, детерминант – все можно посчитать, не используя сложных операций.

Что представляет собой СЛАУ

В математике существует понятие СЛАУ – система линейных алгебраических уравнений.

Что же она собой представляет? Это набор из m уравнений с искомыми n неизвестными величинами, обычно обозначающимися как x, y, z, или x1, x2… xn, или другими символами.

Решить методом Гаусса данную систему – означает найти все искомые неизвестные. Если система имеет одинаковое число неизвестных и уравнений, тогда она называется системой n-го порядка.

Наиболее популярные методы решения СЛАУ

В учебных заведениях среднего образования изучают различные методики решения таких систем. Чаще всего это простые уравнения, состоящие из двух неизвестных, поэтому любой существующий метод для поиска ответа на них не займет много времени.

Это может быть как метод подстановки, когда из одного уравнения выводится другое и подставляется в изначальное. Или метод почленного вычитания и сложения. Но наиболее легким и универсальным считается метод Гаусса.

Важно

Он дает возможность решать уравнения с любым количеством неизвестных. Почему именно эта методика считается рациональной? Все просто.

Матричный способ хорош тем, что здесь не требуется по несколько раз переписывать ненужные символы в виде неизвестных, достаточно проделать арифметические операции над коэффициентами – и получится достоверный результат.

Где используются СЛАУ на практике

Решением СЛАУ являются точки пересечения прямых на графиках функций.

В наш высокотехнологический компьютерный век людям, которые тесно связаны с разработкой игр и прочих программ, необходимо знать, как решать такие системы, что они представляют и как проверить правильность получившегося результата.

Наиболее часто программисты разрабатывают специальные программы-вычислители линейной алгебры, сюда входит и система линейных уравнений. Метод Гаусса позволяет высчитать все существующие решения. Также используются и другие упрощенные формулы и методики.

Критерий совместимости СЛАУ

Такую систему можно решить только в том случае, если она совместима. Для понятности представим СЛАУ в виде Ax=b. Она имеет решение, если rang(A) равняется rang(A,b). В этом случае (A,b) – это матрица расширенного вида, которую можно получить из матрицы А, переписав ее со свободными членами. Выходит, что решить линейные уравнения методом Гаусса достаточно легко.

Возможно, некоторые обозначения не совсем понятны, поэтому необходимо рассмотреть все на примере. Допустим, есть система: x+y=1; 2x-3y=6. Она состоит всего из двух уравнений, в которых 2 неизвестные.

Система будет иметь решение только в том случае, если ранг ее матрицы будет равняться рангу расширенной матрицы. Что такое ранг? Это число независимых строк системы. В нашем случае ранг матрицы 2.

Матрица А будет состоять из коэффициентов, находящихся возле неизвестных, а в расширенную матрицу вписываются и коэффициенты, находящиеся за знаком «=».

Почему СЛАУ можно представить в матричном виде

Исходя из критерия совместимости по доказанной теореме Кронекера-Капелли, систему линейных алгебраических уравнений можно представить в матричном виде.

Применяя каскадный метод Гаусса, можно решить матрицу и получить единственный достоверный ответ на всю систему.

Если ранг обычной матрицы равняется рангу ее расширенной матрицы, но при этом меньше количества неизвестных, тогда система имеет бесконечное количество ответов.

Преобразования матриц

Прежде чем переходить к решению матриц, необходимо знать, какие действия можно проводить над их элементами. Существует несколько элементарных преобразований:

  • Переписывая систему в матричный вид и осуществляя ее решение, можно умножать все элементы ряда на один и тот же коэффициент.
  • Для того чтобы преобразовать матрицу в канонический вид, можно менять местами два параллельных ряда. Канонический вид подразумевает, что все элементы матрицы, которые расположены по главной диагонали, становятся единицами, а оставшиеся – нулями.
  • Соответствующие элементы параллельных рядов матрицы можно прибавлять один к другому.

Метод Жордана-Гаусса

Суть решения систем линейных однородных и неоднородных уравнений методом Гаусса в том, чтобы постепенно исключить неизвестные. Допустим, у нас есть система из двух уравнений, в которых две неизвестные. Чтобы их найти, необходимо проверить систему на совместимость.

Уравнение методом Гаусса решается очень просто. Необходимо выписать коэффициенты, находящиеся возле каждого неизвестного в матричный вид. Для решения системы понадобится выписать расширенную матрицу.

Совет

Если одно из уравнений содержит меньшее количество неизвестных, тогда на место пропущенного элемента необходимо поставить «0». К матрице применяются все известные методы преобразования: умножение, деление на число, прибавление соответствующих элементов рядов друг к другу и другие.

Получается, что в каждом ряду необходимо оставить одну переменную со значением «1», остальные привести к нулевому виду. Для более точного понимания необходимо рассмотреть метод Гаусса на примерах.

Простой пример решения системы 2х2

Для начала возьмем простенькую систему алгебраических уравнений, в которой будет 2 неизвестных.

Перепишем ее в расширенную матрицу.

Чтобы решить данную систему линейных уравнений, требуется проделать всего две операции. Нам необходимо привести матрицу к каноническому виду, чтобы по главной диагонали стояли единицы. Так, переводя с матричного вида обратно в систему, мы получим уравнения: 1x+0y=b1 и 0x+1y=b2, где b1 и b2 – получившиеся ответы в процессе решения.

  1. Первое действие при решении расширенной матрицы будет таким: первый ряд необходимо умножить на -7 и прибавить соответственно отвечающие элементы ко второй строке, чтобы избавиться от одного неизвестного во втором уравнении.
  2. Так как решение уравнений методом Гаусса подразумевает приведение матрицы к каноническому виду, тогда необходимо и с первым уравнением проделать те же операции и убрать вторую переменную. Для этого вторую строку отнимаем от первой и получаем необходимый ответ – решение СЛАУ. Или, как показано на рисунке, вторую строку умножаем на коэффициент -1 и прибавляем к первой строке элементы второго ряда. Это одно и то же.

Как видим, наша система решена методом Жордана-Гаусса. Переписываем ее в необходимую форму: x=-5, y=7.

Пример решения СЛАУ 3х3

Предположим, что у нас есть более сложная система линейных уравнений. Метод Гаусса дает возможность высчитать ответ даже для самой, казалось бы, запутанной системы. Поэтому, чтобы более глубоко вникнуть в методику расчета, можно переходить к более сложному примеру с тремя неизвестными.

Как и в прежнем примере, переписываем систему в вид расширенной матрицы и начинаем приводить ее к каноническому виду.

Для решения этой системы понадобится произвести гораздо больше действий, чем в предыдущем примере.

  1. Сначала необходимо сделать в первом столбце один единичный элемент и остальные нули. Для этого умножаем первое уравнение на -1 и прибавляем к нему второе уравнение. Важно запомнить, что первую строку мы переписываем в изначальном виде, а вторую – уже в измененном.
  2. Далее убираем эту же первую неизвестную из третьего уравнения. Для этого элементы первой строки умножаем на -2 и прибавляем их к третьему ряду. Теперь первая и вторая строки переписываются в изначальном виде, а третья – уже с изменениями. Как видно по результату, мы получили первую единицу в начале главной диагонали матрицы и остальные нули. Еще несколько действий, и система уравнений методом Гаусса будет достоверно решена.
  3. Теперь необходимо проделать операции и над другими элементами рядов. Третье и четвертое действие можно объединить в одно. Нужно разделить вторую и третью строку на -1, чтобы избавиться от минусовых единиц по диагонали. Третью строку мы уже привели к необходимому виду.
  4. Дальше приведем к каноническому виду вторую строку. Для этого элементы третьего ряда умножаем на -3 и прибавляем их ко второй строчке матрицы. Из результата видно, что вторая строка тоже приведена к необходимой нам форме. Осталось проделать еще несколько операций и убрать коэффициенты неизвестных из первой строки.
  5. Чтобы из второго элемента строки сделать 0, необходимо умножить третью строку на -3 и прибавить ее к первому ряду.
  6. Следующим решающим этапом будет прибавление к первой строке необходимые элементы второго ряда. Так мы получаем канонический вид матрицы, а, соответственно, и ответ.
Читайте также:  Как правильно уговорить человека (преподавателя) сделать что-либо и поставить на свою сторону

Как видно, решение уравнений методом Гаусса довольно простое.

Пример решения системы уравнений 4х4

Некоторые более сложные системы уравнений можно решить методом Гаусса посредством компьютерных программ. Необходимо вбить в существующие пустые ячейки коэффициенты при неизвестных, и программа сама пошагово рассчитает необходимый результат, подробно описывая каждое действие.

Ниже описана пошаговая инструкция решения такого примера.

• В первом действии в пустые ячейки вписываются свободные коэффициенты и числа при неизвестных. Таким образом, получается такая же расширенная матрица, которую мы пишем вручную.

• Далее меняются все строки местами, чтобы можно было выразить по главной диагонали единичные элементы.

• И производятся все необходимые арифметические операции, чтобы привести расширенную матрицу к каноническому виду. Необходимо понимать, что не всегда ответ на систему уравнений – это целые числа. Иногда решение может быть из дробных чисел.

Проверка правильности решения

Метод Жордана-Гаусса предусматривает проверку правильности результата. Для того чтобы узнать, правильно ли посчитаны коэффициенты, необходимо всего-навсего подставить результат в изначальную систему уравнений. Левая сторона уравнения должна соответствовать правой стороне, находящейся за знаком “равно”.

Если ответы не совпадают, тогда необходимо пересчитывать заново систему или попробовать применить к ней другой известный вам метод решения СЛАУ, такой как подстановка или почленное вычитание и сложение. Ведь математика – это наука, которая имеет огромное количество различных методик решения.

Но помните: результат должен быть всегда один и тот же, независимо от того, какой метод решения вы использовали.

Метод Гаусса: наиболее часто встречающиеся ошибки при решении СЛАУ

Во время решения линейных систем уравнений чаще всего возникают такие ошибки, как неправильный перенос коэффициентов в матричный вид. Бывают системы, в которых отсутствуют в одном из уравнений некоторые неизвестные, тогда, перенося данные в расширенную матрицу, их можно потерять. В результате при решении данной системы результат может не соответствовать действительному.

Еще одной из главных ошибок может быть неправильное выписывание конечного результата. Нужно четко понимать, что первый коэффициент будет соответствовать первому неизвестному из системы, второй – второму, и так далее.

Метод Гаусса подробно описывает решение линейных уравнений. Благодаря ему легко произвести необходимые операции и найти верный результат. Кроме того, это универсальное средство для поиска достоверного ответа на уравнения любой сложности. Может быть, поэтому его так часто используют при решении СЛАУ.

Источник: https://www.syl.ru/article/183649/new_metod-gaussa-dlya-resheniya-matrits-reshenie-sistemyi-lineynyih-uravneniy-metodom-gaussa

Метод Гаусса. Примеры

Метод Гаусса заключается в последовательном исключении переменных и преобразовании системы линейных алгебраических уравнений

к треугольному виду

Предположим, что в системе коэффициент. Если это условие не выполняется, то на первое место переносим уравнение, которое ее удовлетворяет. С помощью первого уравнения исключимиз остальных уравнений.

Для этого делят первую строчку на, обозначим

.

Дальше второй строки вычитаем первую строку, умноженную на;от третьего первую строчку, умноженный на; и так далее до последней строки. Получим таблицу коэффициентов:

Для неизвестныхимеем системууравнений. Выполняя, как и раньше, исключимиз всех уравнений, начиная с третьего. Для этого сначала разделим вторую строчку на.

Если коэффициент, то переставим уравнения так, чтобы выполнялось условие.

Обозначив

,

от третьей строки вычтем вторую строчку, умноженный на;

от четвертой строки вычтем вторую строчку, умноженный наи т.д. Получим таблицу коэффициентов:

Продолжая процесс исключения неизвестных получим таблицу:

Таблица коэффициентов при неизвестных сводится к треугольному виду. Все главной диагонали элементы. Запишем соответствующую систему уравнений:

Переход от первой системы уравнений до последней называется прямым ходом метода Гаусса. Обратный ход метода Гаусса начинается с последней системы уравнений. Ее решают с конца до начала. Из последнего уравнения находят. Подставив это значение в предпоследнее – находяти т.д. Из первого уравнения находят.

Обратите внимание

Если система уравнений с неизвестными имеет единственное решение, то эта система всегда может быть преобразована к треугольному виду. Для студентов не всегда требуют, чтобы диагональные элементы были равны единице. Достаточно просто свести систему линейных уравнений к верхней треугольной.

——————————————–

Пример 1.

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Гаусса.

Решение.

Исключим неизвестнуюиз второго и третьего уравнения. Для этого от них вычтем первое умноженное на

Видим, что наше уравнение в таком виде можно решать обратным ходом метода Гаусса. Для этого из последнего уравнения выразим

Подставим полученное значение в предыдущее уравнение и найдем

Из первого уравнения находим

Решение данной системы равен

—————————————–

В случаях систем больших размеров, а также для удобства, часто на практике используют другую схему решения.

Вместо преобразований над системой выполняют соответствующие преобразования над матрицей, составленной из коэффициентов при неизвестных и столбца из свободных членов, который для удобства выделяют вертикальной линией. Такую матрицуназывают расширенной матрицей системы.

—————————————–

Пример 2.

Решить систему четырех линейных алгебраических уравнений методом Гаусса.

Решение.

Выпишем расширенную матрицу для данной системы

Сведем ее к треугольному виду с помощью элементарных преобразований.

1.Поменяем местами первый и второй строки.

2. Добавим к элементам второго, третьего и четвертого строк элементы первой строки, умноженные соответственно на

3. Поменяем местами второй и третий строки. Добавим к элементам третьего и четвертого строк элементы второй строки, умноженные соответственно на

4. От четвертого уравнения умноженного навычитаем третье уравнение умноженное на

Такой расширенной матрицы соответствует следующая система уравнений

С четвертого уравнения находими подставляем в третье уравнение

Найденные значения подставляем во второе уравнение

Из первого уравнения находим первую неизвестную

Система полностью решена и– ее решение.

—————————————————–

Посмотреть материалы:

Источник: http://yukhym.com/ru/sistemy-linejnykh-uravnenij/resheniya-sistema-linejnykh-uravnenij-metodom-gaussa.html

Метод Гаусса

27 июня 2011

Смысл метода Гаусса заключается в том, чтобы преобразовать исходную систему уравнений и получить равносильную разрешенную или равносильную несовместную систему.

Итак, метод Гаусса состоит из следующих шагов:

  1. Рассмотрим первое уравнение. Выберем первый ненулевой коэффициент и разделим все уравнение на него. Получим уравнение, в которое некоторая переменная xi входит с коэффициентом 1;
  2. Вычтем это уравнение из всех остальных, умножая его на такие числа, чтобы коэффициенты при переменной xi в остальных уравнениях обнулились. Получим систему, разрешенную относительно переменной xi, и равносильную исходной;
  3. Если возникают тривиальные уравнения (редко, но бывает; например, 0 = 0), вычеркиваем их из системы. В результате уравнений становится на одно меньше;
  4. Повторяем предыдущие шаги не более n раз, где n — число уравнений в системе. Каждый раз выбираем для «обработки» новую переменную. Если возникают противоречивые уравнения (например, 0 = 8), система несовместна.

В результате через несколько шагов получим либо разрешенную систему (возможно, со свободными переменными), либо несовместную. Разрешенные системы распадаются на два случая:

  1. Число переменных равно числу уравнений. Значит, система определена;
  2. Число переменных больше числа уравнений. Собираем все свободные переменные справа — получаем формулы для разрешенных переменных. Эти формулы так и записываются в ответ.

Вот и все! Система линейных уравнений решена! Это довольно простой алгоритм, и для его освоения вам не обязательно обращаться к репетитору высшей по математике. Рассмотрим пример:

Решение:

Описание шагов:

  1. Вычитаем первое уравнение из второго и третьего — получим разрешенную переменную x1;
  2. Умножаем второе уравнение на (−1), а третье уравнение делим на (−3) — получим два уравнения, в которых переменная x2 входит с коэффициентом 1;
  3. Прибавляем второе уравнение к первому, а из третьего — вычитаем. Получим разрешенную переменную x2;
  4. Наконец, вычитаем третье уравнение из первого — получаем разрешенную переменную x3;
  5. Получили разрешенную систему, записываем ответ.

Когда может понадобиться общее решение? Если приходится делать меньше шагов, чем k (k — это сколько всего уравнений). Однако причин, по которым процесс заканчивается на некотором шаге l < k, может быть две:

  1. После l-го шага получилась система, которая не содержит уравнения с номером (l + 1). На самом деле это хорошо, т.к. разрешенная система все равно получена — даже на несколько шагов раньше.
  2. После l-го шага получили уравнение, в котором все коэффициенты при переменных равны нулю, а свободный коэффициент отличен от нуля. Это противоречивое уравнение, а, следовательно, система несовместна.

Важно понимать, что возникновение противоречивого уравнения по методу Гаусса — это достаточное основание несовместности. При этом заметим, что в результате l-го шага не может остаться тривиальных уравнений — все они вычеркиваются прямо в процессе.

Решение:

Описание шагов:

  1. Вычитаем первое уравнение, умноженное на 4, из второго. А также прибавляем первое уравнение к третьему — получим разрешенную переменную x1;
  2. Вычитаем третье уравнение, умноженное на 2, из второго — получим противоречивое уравнение 0 = −5.

Итак, система несовместна, поскольку обнаружено противоречивое уравнение.

Решение:

Описание шагов:

  1. Вычитаем первое уравнение из второго (предварительно умножив на два) и третьего — получим разрешенную переменную x1;
  2. Вычитаем второе уравнение из третьего. Поскольку все коэффициенты в этих уравнениях совпадают, третье уравнение превратится в тривиальное. Заодно умножим второе уравнение на (−1);
  3. Вычитаем из первого уравнения второе — получим разрешенную переменную x2. Вся система уравнений теперь тоже разрешенная;
  4. Поскольку переменные x3 и x4 — свободные, переносим их вправо, чтобы выразить разрешенные переменные. Это и есть ответ.
Читайте также:  Оформление титульного листа контрольной работы, как правильно оформить титульник контрольной, примеры, образцы скачать для студента

Итак, система совместная и неопределенная, поскольку есть две разрешенных переменных (x1 и x2) и две свободных (x3 и x4).

Источник: https://www.berdov.com/works/algebra/gauss/

Решение систем линейных уравнений методом Гаусса

Нет единственного решения!!!

Решение системы линейных уравнений методом Гаусса

Введите систему уравнений:

– количество неизвестных

Количество знаков после разделителя дроби в числах:

Теория

Классическим методом решения систем линейных алгебраических уравнений является метод Гаусса (метод исключений Гаусса). Суть метода – это последовательное исключение неизвестных, т.е.

когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находятся все остальные переменные.

Матрица, составленная из все ai,j, называется основной матрицей системы. Если к этой матрице добавить вектор столбец, составленный из bi, то такая матрица называется расширенной матрицей системы.

Теорема Кронекера-Капелли (условие совместности системы): системат совместна тогда и только тогда, ранг ее основной матрицы равен рангу ее расширенной матрицы.

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа:

  • На первом этапе (прямой ход) система приводится ступенчатой или треугольной форме. Вычтем из второго уравнения системы первое, умноженное на такое число, чтобы обнулился коэффициент при x1. Затем таким же образом вычтем первое уравнение из третьего, четвертого и т.д. Тогда исключаются все коэффициенты первого столбца, лежащие ниже главной диагонали. Затем при помощи второго уравнения исключим из третьего, четвертого и т.д. уравнений коэффициенты второго столбца. Последовательно продолжая этот процесс, исключим из матрицы все коэффициенты, лежащие ниже главной даигонали.
  • На втором этапе (обратный ход) выражаем все получившиеся базисные переменные через небазисные и построим фундаментальную систему решений. Если все переменные являются базисными, то получим единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Copyright © 2010-2019 www.math.by

e-mail: admin@math.by

Источник: http://www.math.by/algebra/solvegauss.html

Высшая математика и экономика

Видеоурок: Метод Жордана-Гаусса (метод прямоугольников)

Пример из видеоурока в рукописном виде:

Пример 2.

Запишем систему в виде:

1 -2 2 -1 -1 2 4
-1 1 3 -1 2 -2
-2 4 -4 -2 -2 1 1
-1 1 -1 1 1 -2

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы. Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.

Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника: НЭ = СЭ – (А*В)/РЭ, где РЭ – разрешающий элемент (1), А и В – элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.

1 -2 2 -1 -1 2 4
-1 1 3 -1 2 -2
-4 -4 5 9
-1 2 -2 3 2

Разрешающий элемент равен (-1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

1 -7 1 -2 8
1 -1 -3 1 -2 2
-4 -4 5 9
1 -5 1 1 4

Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

1 -7 1 -2 8
1 -8 2 -1 6
1 -5 1 1 4
-4 -4 5 9

Разрешающий элемент равен (-4). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.

Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

1 8 -10.75 -7.75
1 10 -11 -12
1 6 -5.25 -7.25
1 1 -1.25 -2.25

Теперь исходную систему можно записать как: x1 = -7.75 – 8×5 – 10.75×6 x2 = -12 – 10×5 – 11×6 x3 = -7.25 – 6×5 – 5.25×6 x4 = -2.25 – x5 – 1.25×6 Необходимо переменные x5,x6 принять в качестве свободных переменных и через них выразить остальные переменные. Приравняем переменные x5,x6 к 0 x1 = -7.75 x2 = -12 x3 = -7.25 x4 = -2.25

Среди базисных переменных есть отрицательные значения. Следовательно, данное решение не опорное.

Источник: http://www.matem96.ru/primer/primer_linalgebra7.shtml

Примеры решения СЛАУ методом Гаусса

Система линейных алгебраических уравнений

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Системой линейных алгебраических уравнений (далее – СЛАУ), содержащей m уравнений и n неизвестных, называется система вида:

где числа aij называются коэффициентами системы, числа bi – свободными членами, aij и bi (i=1,…, m; b=1,…, n) представляют собой некоторые известные числа, а x1,…, xn – неизвестные.

В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент. Подлежат нахождению числа xn. Такую систему удобно записывать в компактной матричной форме: AX=B.

Здесь А – матрица коэффициентов системы, называемая основной матрицей;

– вектор-столбец из неизвестных xj.

– вектор-столбец из свободных членов bi.

Важно

Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов

Метод исключения Гаусса

Сущность метода исключения Гаусса

Классическим методом решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных – метод Гаусса(его еще называют методом гауссовых исключений).

Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Процесс решения по методу Гаусса состоит из двух этапов: прямой и обратный ходы.

1. Прямой ход.

Совет

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна.

А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним.

После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид:,где

Коэффициенты aii называются главными (ведущими) элементами системы.

1-й шаг.

Совет

Будем считать, что элемент (если a11=0, переставим строки матрицы так, чтобы a11 не был равен 0. Это всегда возможно, т. к. в противном случае матрица содержит нулевой столбец, ее определитель равен нулю и система несовместна).

Преобразуем систему, исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы).

Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы (или из второго уравнения почленно вычтем первое, умноженное на ).

Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы (или из третьего почленно вычтем первое, помноженное на ). Таким образом, последовательно умножаем первую строку на число и прибавляем к i-й строке, для i=2, 3, …, n.

Продолжая этот процесс, получим эквивалентную систему:

Здесь – новые значения коэффициентов при неизвестных и свободные члены в последних m-1 уравнениях системы, которые определяются формулами:

Таким образом, на первом шаге уничтожаются все коэффициенты, лежащие под первым ведущим элементом a110, на втором шаге уничтожаются элементы, лежащие под вторым ведущим элементом а22(1) (если a22(1)0) и т.д. Продолжая этот процесс и дальше, мы, наконец, на (m-1) шаге приведем исходную систему к треугольной системе.

Если в процессе приведения системы к ступенчатому виду появятся нулевые уравнения, т.е. равенства вида 0=0, их отбрасывают. Если же появится уравнение вида то это свидетельствует о несовместности системы.

На этом прямой ход метода Гаусса заканчивается.

2. Обратный ход.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений.

Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (она в нем всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Обратите внимание

Примечание: на практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11)

Примеры решения СЛАУ методом Гаусса

Пример 1. Решить СЛАУ 3-го порядка.

x + y – 3z = 2,

3x – 2y + z = – 1,

2x + y – 2z = 0.

Решение. Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

~ ;

б) третью строку умножим на (-5) и прибавим к ней вторую:

.

В результате всех этих преобразований данная система приводится к треугольному виду:

x + y – 3z = 2,

-5y + 10z = -7,

– 10z = 13.

Из последнего уравнения находим z = -1,3. Подставляя это значение во второе уравнение, имеем y = -1,2. Далее из первого уравнения получим
x = – 0,7.

Источник: https://stydopedia.ru/2x57f2.html

Ссылка на основную публикацию