Что такое лазер? физические основы работы лазера. физика для чайников

Физические основы работы лазеров. Применение лазеров. Видеоурок. Физика 11 Класс

На уроке рассматриваются следующие вопросы: отсутствие оптической когерентности при спонтанном излучении атомов; когерентность индуцированного излучения атома вынужденно попавшим в него фотоном; создание лазеров; принцип действия лазера; свойства лазерного излучения; различные типы лазеров; применения лазеров в медицине, технике, оптической локации и управлении термоядерными реакциями.

Тема: Атомная физика

Урок: Физические основы работы лазеров. Применение лазеров

Долгое время в эпоху Ньютона свет не считали волновым явлением, так как для света не наблюдалось явления интерференции (Рис. 1). Явление интерференции заключается в том, что если свет от двух разных источников попадает в одну точку, то, при условии когерентности, в этой точке должно произойти либо усиление, либо ослабление световых колебаний. Но этого не наблюдалось.

От независимых источников интерференционная картина не наблюдается.

Для независимых источников не соблюдается условие когерентности, так как излучение света связано с переходом более высокого энергетического состояния в более низкое состояние атомов излучателя. Данный переход является спонтанным, постоянной фазы нет. А условие когерентности – это постоянство во времени разности фаз между источниками.

Рис. 1. Явление интерференции

С современной точки зрения излучение света происходит следующим образом. Получая какую-то энергию, электрон в атоме переходит из основного состояния в возбужденное состояние.

В этом возбужденном состоянии атом может пребывать очень небольшое время (примерно 10-8 с). И затем атом переходит снова в стационарное состояние, при этом излучая фотон.

Обратите внимание

Когерентность фотона связана с тем, что все излучение занимает 10-8 с, за это время волна (фотон) успевает выполнить 50 периодов, а затем эта картина прерывается.

В 1916 году Эйнштейн доказал, что, в зависимости от причин, которые заставляют атом из возбужденного состояния перейти в стационарное состояние, могут быть совершенно разные эффекты.

Если причина случайная – спонтанное излучение.

Индуцированное излучение – излучение, в котором излучение атома вызвано попаданием в него фотона.

Эйнштейн доказал, что если в атом попадает фотон такой энергии, которая может быть излучена при переходе из возбужденного состояния в стационарное состояние самим атомом, то этот фотон атомом не поглощается, а после атома идут уже два абсолютно идентичных фотона. Эти фотоны имеют одинаковую длину волны, частоту, пространственное направление, поляризацию и являются полностью когерентными.

Эта идея вынужденного фотонами излучения атомов положена в основу создания лазеров. Чтобы лазер работал, необходимо, чтобы таких атомов в возбужденном состоянии было много.

Рис. 2.

Была придумана система увеличения количества атомов, в которых электроны находятся на более высоком энергетическом уровне, т. е. атом находится в возбужденном состоянии.

Обратите внимание

Пусть есть активная среда, в которой возбуждаются атомы. Она находится между двумя зеркалами, одно из которых является глухим (абсолютно не прозрачным), а второе зеркало – полупрозрачным (Рис. 2), т. е.

примерно 2% излучения могут пройти через это зеркало. Но чтобы эти 2% составили большую энергию, необходимо, чтобы в активную среду поступала энергия любого вида (электрический разряд, тепловая энергия и т. д.).

Любой вид энергии может привести к переходу атома в возбужденное состояние (Рис. 3).

Рис. 3. 

Рис. 4.

Рис. 5.

Важно

При этом, если какой-нибудь фотон встречает атом, в котором при переходе из возбужденного состояния может быть излучение той же самой частоты, то фотон превращается в два фотона. Два таких фотона могут тоже попасть в два таких атома, которые находятся тоже в возбужденном состоянии, тогда их получится 4, и т. д.

Между зеркалами создается такая среда, что эти фотоны отражаются то от одного зеркала, то от другого, и между двумя зеркалами перемещается множество фотонов. Поэтому между зеркалами появляется много атомов, которые находятся в метастабильном состоянии.

В любой момент времени метастабильность можно прервать, тогда из лазера выходит когерентное излучение, обладающее большой мощностью. Когерентные фотоны идут рядом друг с другом (Рис. 4-5).

В 1940 году Фабрикант предложил идею накачки лазера большим количеством возбужденных атомов. Но только в 1954 году Басов с Прохоровым и независимо от них Чаунс создали первые лазеры (тогда они назывались мазеры). Диапазон волн у этих мазеров был радиотехнический, т. е. они излучали когерентное излучение радиоволн, с длиной волны 1,27 см.

В 1960 году была создана система, которая напоминает нынешний лазер – лазер на рубине.

Рис. 6.

Рис. 7.

Такой лазер имеет трехуровневую систему (Рис. 6-7). Так как в состав рубина входят атомы хрома, они имеют трехступенчатую картинку: основное состояние, состояние с энергией Е2 и состояние с энергией Е3. Состояние Е2 является неустойчивым, и атом может с него спуститься до состояния Е3.

Время существования атома при этом увеличится на пять порядков. В таком случае, системой накачки можно создать такую ситуацию, что почти все атомы хрома находятся в возбужденном состоянии и ждут сигнала для перехода в стационарное состояние. Вследствие этого получается мощный лазерный луч.

Газовые лазеры на основе гелий + неон  (Не – буферная среда, Ne дает излучение). Данный лазер дает ярко-красное излучение:

Совет

Отличаются маленьким разбросом частот. Такие лазеры обладают высокой когерентностью.

lk – длина когерентности лазерного луча

Газовые лазеры на основе углекислого газа работают в инфракрасной области.

Существуют также жидкостные лазеры с разными красителями, т. е. можно получать излучения разных цветов.

Самые дешевые – полупроводниковые лазеры. Они могут регулировать свою частоту излучения и, соответственно, длину волны.

Лазерное излучение покрывает огромный диапазон:

Лазеры применяются в  технике, в медицине и т. д. Например, запись информации проводится на лазерных дисках, лазер используют в микрохирургии глаза, при сварке металла и т. д.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. The картридж (Источник).
  2. Lasers.org.ru (Источник).

Источник: https://interneturok.ru/lesson/physics/11-klass/atomnaja-fizika/fizicheskie-osnovy-raboty-lazerov-primenenie-lazerov

Что такое лазер? Принцип работы и применение. – Сайт для Всезнаек и Почемучек

Сложно в наше время найти человека, который никогда не слышал бы слова «лазер», однако чётко представляют, что это такое, весьма немногие.

За полвека с момента изобретения лазеры разных видов нашли применение в широком спектре направлений, от медицины до цифровой техники. Так что же такое лазер, каков принцип его действия, и для чего он нужен?

Что такое лазер?

Возможность существования лазеров была предсказана Альбертом Эйнштейном, который ещё в 1917 году опубликовал работу, говорящую о возможности излучения электронами квантов света определённой длины. Это явление было названо вынужденным излучением, но долгое время оно считалось нереализуемым с технической точки зрения.

Однако с развитием технических и технологических возможностей создание лазера стало делом времени. В 1954 году советские учёные Н. Басов и А. Прохоров получили Нобелевскую премию за создание мазера – первого микроволнового генератора, работающего на аммиаке. А в 1960 году американец Т.

Мейман изготовил первый квантовый генератор оптических лучей, названный им лазером (Light Amplification by Stimulated Emission of Radiation). Устройство преобразовывает энергию в оптическое излучение узкой направленности, т.е. световой луч, поток квантов света (фотонов) высокой концентрации.

Принцип функционирования лазера

Явление, на котором основана работа лазера, называется вынужденным, или индуцированным, излучением среды. Атомы определённого вещества могут испускать фотоны под действием других фотонов, при этом энергия воздействующего фотона должна быть равной разности между энергетическими уровнями атома до излучения и после него.

Излучённый фотон является когерентным тому, который вызвал излучение, т.е. в точности подобен первому фотону. В результате слабый поток света в среде усиливается, причём не хаотично, а в одном заданном направлении. Образуется луч вынужденного излучения, которое и получило название лазера.

Классификация лазеров

По мере исследования природы и свойств лазеров были открыты различные виды этих лучей. По виду состояния исходного вещества лазеры могут быть:

  • газовыми;
  • жидкостными;
  • твердотельными;
  • на свободных электронах.

В настоящее время разработано несколько способов получения лазерного луча:

  • при помощи электрического тлеющего либо дугового разряда в газовой среде – газоразрядные;
  • при помощи расширения горячего газа и создания инверсий населённости – газодинамические;
  • при помощи пропускания тока через полупроводник с возбуждением среды – диодные или инжекционные;
  • путём оптической накачки среды лампой-вспышкой, светодиодом, другим лазером и т. д.;
  • путём электронно-лучевой накачки среды;
  • ядерной накачкой при поступлении излучения из ядерного реактора;
  • при помощи особых химических реакций – химические лазеры.

Все они обладают своими особенностями и отличиями, благодаря которым находят применение в различных сферах промышленности.

Практическое использование лазеров

На сегодняшний день лазеры разных типов применяются в десятках отраслей промышленности, медицины, IT технологий и других сферах деятельности. С их помощью осуществляются:

  • резка и сварка металлов, пластмасс, других материалов;
  • нанесение изображений, надписей и маркировка поверхности изделий;
  • сверление сверхтонких отверстий, прецизионная обработка полупроводниковых кристаллических деталей;
  • формирование покрытий изделий напылением, наплавкой, поверхностным легированием и т.д.;
  • передача информационных пакетов при помощи стекловолокна;
  • выполнение хирургических операций и других лечебных воздействий;
  • косметологические процедуры омоложения кожи, удаления дефектных образований и др.;
  • наведение на цель различных видов вооружений, от стрелкового до ракетного оружия;
  • создание и использование голографических методов;
  • применение в различных научно-исследовательских работах;
  • измерение расстояний, координат, плотности рабочих сред, скорости потоков и многих других параметров;
  • запуск химических реакций для проведения различных технологических процессов.

Существует ещё немало направлений, в которых лазеры уже используются или найдут применение в самое ближайшее время.

Источник: http://www.vseznaika.org/fizika/chto-takoe-lazer-princip-raboty-i-primenenie/

Физические основы работы лазеров. Применение лазеров

На уроке рассматриваются следующие вопросы: отсутствие оптической когерентности при спонтанном излучении атомов; когерентность индуцированного излучения атома вынужденно попавшим в него фотоном; создание лазеров; принцип действия лазера; свойства лазерного излучения; различные типы лазеров; применения лазеров в медицине, технике, оптической локации и управлении термоядерными реакциями.

Долгое время в эпоху Ньютона свет не считали волновым явлением, так как для света не наблюдалось явления интерференции (Рис. 1). Явление интерференции заключается в том, что если свет от двух разных источников попадает в одну точку, то, при условии когерентности, в этой точке должно произойти либо усиление, либо ослабление световых колебаний. Но этого не наблюдалось.

От независимых источников интерференционная картина не наблюдается.

Для независимых источников не соблюдается условие когерентности, так как излучение света связано с переходом более высокого энергетического состояния в более низкое состояние атомов излучателя. Данный переход является спонтанным, постоянной фазы нет. А условие когерентности – это постоянство во времени разности фаз между источниками.

Рис. 1. Явление интерференции

С современной точки зрения излучение света происходит следующим образом. Получая какую-то энергию, электрон в атоме переходит из основного состояния в возбужденное состояние.

В этом возбужденном состоянии атом может пребывать очень небольшое время (примерно 10-8 с). И затем атом переходит снова в стационарное состояние, при этом излучая фотон.

Когерентность фотона связана с тем, что все излучение занимает 10-8 с, за это время волна (фотон) успевает выполнить 50 периодов, а затем эта картина прерывается.

В 1916 году Эйнштейн доказал, что, в зависимости от причин, которые заставляют атом из возбужденного состояния перейти в стационарное состояние, могут быть совершенно разные эффекты.

Если причина случайная – спонтанное излучение.

Индуцированное излучение – излучение, в котором излучение атома вызвано попаданием в него фотона.

Читайте также:  Бесплатные мобильные приложения для изучения математики, физики и русского языка

Эйнштейн доказал, что если в атом попадает фотон такой энергии, которая может быть излучена при переходе из возбужденного состояния в стационарное состояние самим атомом, то этот фотон атомом не поглощается, а после атома идут уже два абсолютно идентичных фотона. Эти фотоны имеют одинаковую длину волны, частоту, пространственное направление, поляризацию и являются полностью когерентными.

Эта идея вынужденного фотонами излучения атомов положена в основу создания лазеров. Чтобы лазер работал, необходимо, чтобы таких атомов в возбужденном состоянии было много.

Рис. 2.

Была придумана система увеличения количества атомов, в которых электроны находятся на более высоком энергетическом уровне, т. е. атом находится в возбужденном состоянии.

Обратите внимание

Пусть есть активная среда, в которой возбуждаются атомы. Она находится между двумя зеркалами, одно из которых является глухим (абсолютно не прозрачным), а второе зеркало – полупрозрачным (Рис. 2), т. е.

примерно 2% излучения могут пройти через это зеркало. Но чтобы эти 2% составили большую энергию, необходимо, чтобы в активную среду поступала энергия любого вида (электрический разряд, тепловая энергия и т. д.).

Любой вид энергии может привести к переходу атома в возбужденное состояние (Рис. 3).

Рис. 3.  Рис. 4. Рис. 5.
Важно

При этом, если какой-нибудь фотон встречает атом, в котором при переходе из возбужденного состояния может быть излучение той же самой частоты, то фотон превращается в два фотона. Два таких фотона могут тоже попасть в два таких атома, которые находятся тоже в возбужденном состоянии, тогда их получится 4, и т. д.

Между зеркалами создается такая среда, что эти фотоны отражаются то от одного зеркала, то от другого, и между двумя зеркалами перемещается множество фотонов. Поэтому между зеркалами появляется много атомов, которые находятся в метастабильном состоянии.

В любой момент времени метастабильность можно прервать, тогда из лазера выходит когерентное излучение, обладающее большой мощностью. Когерентные фотоны идут рядом друг с другом (Рис. 4-5).

В 1940 году Фабрикант предложил идею накачки лазера большим количеством возбужденных атомов. Но только в 1954 году Басов с Прохоровым и независимо от них Чаунс создали первые лазеры (тогда они назывались мазеры). Диапазон волн у этих мазеров был радиотехнический, т. е. они излучали когерентное излучение радиоволн, с длиной волны 1,27 см.

В 1960 году была создана система, которая напоминает нынешний лазер – лазер на рубине.

Рис. 6. Рис. 7.

Такой лазер имеет трехуровневую систему (Рис. 6-7). Так как в состав рубина входят атомы хрома, они имеют трехступенчатую картинку: основное состояние, состояние с энергией Е2 и состояние с энергией Е3. Состояние Е2 является неустойчивым, и атом может с него спуститься до состояния Е3.

Время существования атома при этом увеличится на пять порядков. В таком случае, системой накачки можно создать такую ситуацию, что почти все атомы хрома находятся в возбужденном состоянии и ждут сигнала для перехода в стационарное состояние. Вследствие этого получается мощный лазерный луч.

Газовые лазеры на основе гелий + неон  (Не – буферная среда, Ne дает излучение). Данный лазер дает ярко-красное излучение:

Совет

Отличаются маленьким разбросом частот. Такие лазеры обладают высокой когерентностью.

lk – длина когерентности лазерного луча

Газовые лазеры на основе углекислого газа работают в инфракрасной области.

Важно

Существуют также жидкостные лазеры с разными красителями, т. е. можно получать излучения разных цветов.

Самые дешевые – полупроводниковые лазеры. Они могут регулировать свою частоту излучения и, соответственно, длину волны.

Лазерное излучение покрывает огромный диапазон:

Лазеры применяются в  технике, в медицине и т. д. Например, запись информации проводится на лазерных дисках, лазер используют в микрохирургии глаза, при сварке металла и т. д.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. The картридж (Источник).
  2. Lasers.org.ru (Источник).

Источник: http://msk.edu.ua/ivk/Fizika/Internet-uroki/Atomnaya_fizika/Fizicheskiye_osnovy_raboty_lazerov_Primeneniye_lazerov.php

Основы работы лазеров. Что такое лазер?

Лазеры давно вошли в нашу жизнь повседневную жизнь.

С одной стороны, почти у каждого дома или на работе есть лазерный принтер, к которому все привыкли.

С другой – лезерные мечи все так же будоражат воображение тех, кто первый раз (да и не первый тоже) смотрит Звездные Войны. Сейчас мы на элементарном уровне разберем, что такое лазер, а также рассмотрим физические основы работы этого хитрого понятия.

Что такое лазер?

Интересный факт: знаете ли Вы, что до появления лазеров были мазеры?

Мазер – квантовый генератор, излучающий когерентные микроволны (волны сантиметрового диапазона)

Мазер – это аббревиатура, от английского microwave amplification by stimulated emission of radiation, что в переводе означает “усиление микроволн с помощью вынужденного излучения”. Мазер был изобретен в 1950-х годах, на несколько лет раньше лазера.

Мазеры и лазеры работают по одному и тому же принципу. Отличие состоит в том, что мазеры усиливают волны разного диапазона. Мазер – это усиление микроволн, а лазер – усиление света, то есть волн видимого диапазона.

Лазерные мечи

Лазер (от ight amplification by stimulated emission of radiation – «усиление света посредством вынужденного излучения») – устройство, которое преобразует энергию накачки в энергию монохроматического, поляризованного и узконаправленного потока излучения.

Среди всех этих умных слов для понимания принципа работы лазера нужно выделить два – «вынужденного излучения». Это именно то, что лежит в основе работы лазера.

Именно явление вынужденного излучения лежит в основе работы лазера. В чем суть?

Вынужденное излучение

Совет

Мы знаем, что атом может находиться в разных энергетических состояниях. В самом простом случае состояний всего два – основное и возбужденное. Электроны вращаются вокруг ядра атома по орбитам, которые соответствуют определенным энергиям.

При определенных условиях электрон может как бы перескакивать с одной орбиты на другую и обратно. Т.е. электроны, вращающиеся вокруг ядра, могут переходить с одного энергетического уровня на другой. Причем если электрон переходит с более высокого энергетического уровня на нижний, выделяется энергия.

Для перехода с нижнего уровня на верхний или наоборот, энергию электрону нужно сообщить.

Излучение атома

А теперь представим, что у нас есть атом в возбужденном состоянии, и на него налетает фотон с энергией, равной разности энергий уровней атома. В таком случае наш атом испустит точно такой же фотон, а электрон с высшего уровня энергии перейдет на более низкий. Это и есть вынужденное излучение. Различают также спонтанное излучение, когда возбужденный атом самопроизвольно испускает фотон.

Как это явление работает в лазерах?

Представим себе самый простой лазер, состоящий из системы накачки, рабочей среды и оптического резонатора.

Система накачки необходима, чтобы сообщить рабочей среде энергию, которая будет преобразована в энергию излучения, и создать инверсию населенностей энергетических уровней.

Например, если рабочим телом нашего лазера являются атомы с всего двумя энергетическими состояниями, то для работы лазера необходимо, чтобы возбужденные атомы превышали по количеству невозбужденные.

Инверсия населенностей – основа того, чтобы генерация излучения в лазере могла начаться.

Твердотельный лазер

Обратите внимание

Рабочим телом лазера могут быть как твердые тела, так и жидкости с газами. Физическая суть работы всех этих приборов остается одной и той же. Кстати, первый в мире лазер был рубиновым, т.е. имел в качестве рабочего тела кристалл рубина.

Когда инверсия населенностей достигнута, возбужденные атомы рабочей среды начинают излучать фотоны (спонтанное излучение).

Чтобы процесс не «угас», необходимо обеспечить обратную связь. В простейшем случае роль оптического резонатора играют два зеркала, одно из которых пропускает часть фотонов (полупрозрачно), а второе – отражает.

Таким образом, определенная часть испущенных фотонов остается в рабочем пространстве, индуцируя излучение все новых и новых атомов, от чего процесс начинает развиваться лавинообразно и лазер светит.

Источник: https://multiurok.ru/blog/osnovy-raboty-lazerov-chto-takoe-lazer.html

Как устроены лазеры и где их используют

Появление лазеров было предсказано ещё Альбертом Эйнштейном в 1916 году: он изложил свою концепцию вынужденного излучения.

Вынужденное, или индуцированное, излучение – генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т.д.

) из возбуждённого в стабильное состояние (меньший энергетический уровень) под воздействием индуцирующего фотона, энергия которого была равна разности энергий уровней.

Через 12 лет, в 1928 году, существование вынужденного излучения было подтверждено экспериментально, а 16 мая 1960 года Теодор Майман продемонстрировал работу первого оптического квантового генератора — лазера. Пожалуй, именно с этой даты можно вести отсчёт активного развития физики лазеров.

Кстати, лазер – это аббревиатура, которая расшифровывается следующим образом: light amplification by stimulated emission of radiation — усиление света посредством вынужденного излучения.

Практически любой лазер состоит из трёх основных элементов: источник энергии (механизм “накачки”), рабочее тело, система зеркал (“оптический резонатор”). Рассказываем о каждом из них подробнее.

Источники энергии в лазерах могут быть использованы следующие:

  • электрический разрядник
  • импульсная лампа
  • дуговая лампа
  • другой лазер
  • химическая реакция
  • взрывчатое вещество

Что именно будет использоваться в качестве источника энергии зависит от того, что в отдельно взятом лазере выступает рабочим телом. Это же определяет и способ подвода энергии к системе: в гелий-неоновых лазерах, к примеру, используют электрические разряды в гелий-неоновой газовой смеси.

От того, какое рабочее тело использовано в лазере, зависит рабочая длина его волны, а также остальные свойства. Рабочее тело подвергается “накачке” энергией, чтобы получить эффект инверсии электронных населённостей, который вызывает вынужденное излучение фотонов и эффект оптического усиления.

В конструкции современных лазеров могут быть использованы следующие типы рабочих тел:

  • Жидкость. Применяется в качестве рабочего тела, например, в лазерах на красителях. В состав входят органический растворитель (метанол, этанол или этиленгликоль), в котором растворены химические красители (кумарин или родамин). Рабочая длина волны жидкостных лазеров определяется конфигурацией молекул используемого красителя.
  • Газы. В частности, углекислый газ, аргон, криптон или газовые смеси, как в гелий-неоновых лазерах. “Накачка” энергией этих лазеров чаще всего осуществляется с помощью электрических разрядов.
  • Твёрдые тела (кристаллы и стёкла). Сплошной материал таких рабочих тел активируется (легируется) посредством добавления небольшого количества ионов хрома, неодима, эрбия или титана. Обычно используются следующие кристаллы: алюмо-иттриевый гранат, литиево-иттриевый фторид, сапфир (оксид алюминия) и силикатное стекло. Твердотельные лазеры обычно “накачиваются” импульсной лампой или другим лазером.
  • Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, “накачиваются” электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.

Простейшей формой оптического резонатора являются два параллельных зеркала (их также может быть четыре и больше), расположенных вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. До момента выхода наружу волна может отражаться многократно.

Физической основой работы лазера служит как раз предсказанное Эйнштейном явление вынужденного (индуцированного) излучения, о суть которого мы пояснили в самом начале. Индуцированное излучение отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор.

Читайте также:  Сопроводительное письмо: как составить правильное сопроводительное письмо, св письмо на английском, форма и оформление

Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным.

При этом, используя различные приборы для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности.

Этот режим работы лазера называют режимом модулированной добротности.

Лазеры широко применяются в самых различных сферах человеческой деятельности. Немного подумав, мы без особо труда сможем назвать несколько лазеров, с которыми сталкиваемся если не каждый день, то с завидной регулярностью: проигрыватели CD и DVD дисков, лазерные принтеры, считыватели штрих-кодов в супермаркетах и лазерные указки.

Лазеры широко применяются в медицине и косметологии: коррекция зрения, лечение катаракты и отслоения сетчатки, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление пигментных пятен.

Лазеры находят применение для измерения времени, давления, температуры, скорости потоков жидкостей и газов, угловой скорости (лазерный гироскоп), концентрации веществ, оптической плотности, разнообразных оптических параметров и характеристик, в виброметрии и других областях.

Источник: http://www.poetomu.ru/publ/zhurnal/razvitie_i_tekhnologii/kak_ustroeny_lazery_i_gde_ikh_ispolzujut/32-1-0-189

Физические основы работы лазера

Термин “лазер” составлен из первых букв английского выражения “Light Amplification by Stimulated Emission of Radiation”, что в переводе означает “усиление света в результате вынужденного излучения. Впервые представление о вынужденном излучении было выдвинуто Эйнштейном в 1916 г.

при выводе формулы Планка с учетом постулатов Бора. На неразличимость квантов падающего и вынужденного излучения (свойство когерентности) впервые указали Эйнштейн и Эренфест в 1921 г.

Строгое обоснование существования вынужденного излучения и наличия когерентности было дано Дираком в 1930 г.

Впервые экспериментально индуцированное излучение наблюдали Парселл и Паунд в 1950 г.

В 1960 г Беннет и Эрриот создали первый газовый лазер на смеси He-Ne.

В 1966 г. Паттел создал молекулярный лазер на CO2.

В 1961 г. Хелвертс впервые предложил метод модуляции добротности, который позволил значительно поднять мощность излучения благодаря сокращению длительности импульса до 10-8…10-9 с.

Эти события являются основными вехами в создании лазеров. В дальнейшем проводились исследования различных активных сред и способов накачки лазеров. В настоящее время получена генерация более чем на 1000 объектах: кристаллах, жидкостях, полупроводниках, плазме, газах и т.д.

ФИЗИЧЕСКИЕ ОСНОВЫ РАБОТЫ ЛАЗЕРА

Важно

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения.

Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения.

При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии.

Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей).

В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.).

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения.

Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы.

Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.

) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы). Этот режим работы лазера называют режимом модулированной добротности.

Совет

Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум.

Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами.

Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости.

Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

Устройство лазера

29718052070

На схеме обозначены: 1 — активная среда; 2 — энергия накачки лазера; 3 — непрозрачное зеркало; 4 — полупрозрачное зеркало; 5 — лазерный луч.

Все лазеры состоят из трёх основных частей:

активной (рабочей) среды;

системы накачки (источник энергии);

оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя).

Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Активная среда

В настоящее время в качестве рабочей среды лазера используются различные агрегатные состояния вещества: твёрдое, жидкое, газообразное, плазма. В обычном состоянии число атомов, находящихся на возбуждённых энергетических уровнях, определяется распределением Больцмана:

Обратите внимание

здесь N — число атомов, находящихся в возбуждённом состоянии с энергией E, N0 — число атомов, находящихся в основном состоянии, k — постоянная Больцмана, T — температура среды.

Иными словами, таких атомов, находящихся в возбужденном состоянии меньше, чем в основном, поэтому вероятность того, что фотон, распространяясь по среде, вызовет вынужденное излучение также мала по сравнению с вероятностью его поглощения.

Поэтому электромагнитная волна, проходя по веществу, расходует свою энергию на возбуждение атомов. Интенсивность излучения при этом падает по закону Бугера:

здесь I0 — начальная интенсивность, Il — интенсивность излучения, прошедшего расстояние l в веществе, a1 — коэффициент поглощения вещества. Поскольку зависимость экспоненциальная, излучение очень быстро поглощается.

В том случае, когда число возбуждённых атомов больше, чем невозбуждённых (то есть в состоянии инверсии населённостей), ситуация прямо противоположна. Акты вынужденного излучения преобладают над поглощением, и излучение усиливается по закону:

где a2 — коэффициент квантового усиления. В реальных лазерах усиление происходит до тех пор, пока величина поступающей за счёт вынужденного излучения энергии не станет равной величине энергии, теряемой в резонаторе.

Эти потери связаны с насыщением метастабильного уровня рабочего вещества, после чего энергия накачки идёт только на его разогрев, а также с наличием множества других факторов (рассеяние на неоднородностях среды, поглощение примесями, неидеальность отражающих зеркал, полезное и нежелательное излучение в окружающую среду и пр.).

Система накачки

Для создания инверсной населённости среды лазера используются различные механизмы.

В твердотельных лазерах она осуществляется за счёт облучения мощными газоразрядными лампами-вспышками, сфокусированным солнечным излучением (так называемая оптическая накачка) и излучением других лазеров (в частности, полупроводниковых).

При этом возможна работа только в импульсном режиме, поскольку требуются очень большие плотности энергии накачки, вызывающие при длительном воздействии сильный разогрев и разрушение стержня рабочего вещества. В газовых и жидкостных лазерах используется накачка электрическим разрядом.

Такие лазеры работают в непрерывном режиме. Накачка химических лазеров происходит посредством протекания в их активной среде химических реакций.

При этом инверсия населённостей возникает либо непосредственно у продуктов реакции, либо у специально введённых примесей с подходящей структурой энергетических уровней. Накачка полупроводниковых лазеров происходит под действием сильного прямого тока через p-n переход, а также пучком электронов. Существуют и другие методы накачки (газодинамические, заключающиеся в резком охлаждении предварительно нагретых газов; фотодиссоциация, частный случай химической накачки и др.).

4114803175

Важно

На рисунке: а — трёхуровневая и б — четырёхуровневая схемы накачки активной среды лазера.

Классическая трёхуровневая система накачки рабочей среды используется, например, в рубиновом лазере. Рубин представляет собой кристалл корунда Al2O3, легированный небольшим количеством ионов хрома Cr3+, которые и являются источником лазерного излучения.

Из-за влияния электрического поля кристаллической решётки корунда внешний энергетический уровень хрома E2 расщеплён. Именно это делает возможным использование немонохроматического излучения в качестве накачки. При этом атом переходит из основного состояния с энергией E0 в возбуждённое с энергией около E2.

В этом состоянии атом может находиться сравнительно недолго (порядка 10−8 с), почти сразу происходит безызлучательный переход на уровень E1, на котором атом может находиться значительно дольше (до 10−3 с), это так называемый метастабильный уровень.

Возникает возможность осуществления индуцированного излучения под воздействием других случайных фотонов. Как только атомов, находящихся в метастабильном состоянии становится больше, чем в основном, начинается процесс генерации.

Следует отметить, что создать инверсию населённостей атомов хрома Cr с помощью накачки непосредственно с уровня E0 на уровень E1 нельзя.

Это связано с тем, что если поглощение и вынужденное излучение происходят между двумя уровнями, то оба эти процесса протекают с одинаковой скоростью.

Поэтому в данном случае накачка может лишь уравнять населённости двух уровней, чего недостаточно для возникновения генерации.

В некоторых лазерах, например в неодимовом, генерация излучения в котором происходит на ионах неодима Nd3+, используется четырёхуровневая схема накачки. Здесь между метастабильным E2 и основным уровнем E0 имеется промежуточный — рабочий уровень E1.

Совет

Вынужденное излучение происходит при переходе атома между уровнями E2 и E1. Преимущество этой схемы заключается в том, что в данном случае легко выполнить условие инверсной населенности, так как время жизни верхнего рабочего уровня (E2) на несколько порядков больше времени жизни нижнего уровня (E1).

Это значительно снижает требования к источнику накачки. Кроме того, подобная схема позволяет создавать мощные лазеры, работающие в непрерывном режиме, что очень важно для некоторых применений.

Однако подобные лазеры обладают существенным недостатком в виде низкого квантового КПД, которое определяется как отношение энергии излученного фотона к энергии поглощенного фотона накачки (ηквантовое = hνизлучения/hνнакачки)

Оптический резонатор

99060635

В ширину спектральной линии, изображённой на рисунке зелёным цветом, укладывается три собственных частоты резонатора. В этом случае генерируемое лазером излучение будет трехмодовым. Для фиолетовой линии излучение будет чисто монохроматическим.

Зеркала лазера не только обеспечивают существование положительной обратной связи, но и работают как резонатор, поддерживая одни генерируемые лазером моды, соответствующие стоячим волнам данного резонатора, и подавляя другие. Если на оптической длине L резонатора укладывается целое число полуволн n:

то такие волны, проходя по резонатору не меняют своей фазы и вследствие интерференции усиливают друг друга. Все остальные, близко расположенные волны, постепенно гасят друг друга. Таким образом спектр собственных частот оптического резонатора определяется соотношением:

здесь c — скорость света в вакууме. Интервалы между соседними частотами резонатора одинаковы и равны:

Линии в спектре излучения в силу различных причин (доплеровское уширение, внешние электрические и магнитное поля, квантовомеханическое эффекты и др.) всегда имеют определённую ширину . Поэтому могут возникать ситуации, когда на ширину спектральной линии укладывается несколько собственных частот резонатора.

Обратите внимание

В этом случае излучение лазера будет многомодовым. Синхронизация этих мод позволяет добиться того, чтобы излучение представляло собой последовательность коротких и мощных импульсов.

Читайте также:  Что значит дать обещание: как студенту сдержать данное обещание и не нарушить его

Если же , то в излучении лазера будет присутствовать только одна частота, в данном случае резонансные свойства системы зеркал слабо выражены на фоне резонансных свойств спектральной линии.

При более строгом расчёте необходимо учитывать, что усиливаются волны, распространяющиеся не только параллельно оптической оси резонатора, но и под малым углом к ней. Условие усиления тогда принимает вид:

Это приводит к тому, что интенсивность пучка лучей лазера различна в разных точках плоскости, перпендикулярной этому пучку. Здесь наблюдается система светлых пятен, разделённых тёмными узловыми линиями. Для устранения этих нежелательных эффектов используют различные диафрагмы, рассеивающие нити, а также применяют различные схемы оптических резонаторов.

Источник: https://freedocs.xyz/docx-107010312

Лазеры. Основы устройства и их применение . Доклад. Физика. 2008-12-09

ЛАЗЕР.

1)Краткие исторические данные.

Лазер, источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул.

Слово “лазер” составлено из начальных букв (аббревиатура) слов английской фразы “Light Amplification by Stimulated Emission of Radiation”, что означает “усиление света в результате вынужденного излучения”. Первый лазер был создан в 1960 году- и сразу  началось бурное развитие лазерной техники.

В сравнительно короткое время появились различные типы лазеров и лазерных устройств предназначенных для решения конкретных научных и технических задач.

2)Строение лазера

                  Лазер – источник света. По сравнению с другими источниками света лазер обладает рядом уникальных свойств, связанных с когерентностью и высокой направленностью его излучения. Излучение “нелазерных” источников света не имеет этих особенностей.

                  ”Сердце лазера” – его активный элемент. У одних лазеров он представляет собой кристаллический или  стеклянный стержень цилиндрической формы. У других – это отпаянная стеклянная трубка, внутри которой находится специально подобранная газовая смесь. У третьих – кювета со специальной жидкостью. Соответственно различают лазеры твердотельные, газовые и жидкостные.

                  При нагревании любое тело начинает испускать тепло. Однако излучение теплового источника распространяется по всем направлениям от источника, т. е. заполняет телесный угол 2p рад.

Формирование направленного пучка от такого источника, осуществляемое с помощью системы диафрагм или оптических систем, состоящих из линз и зеркал, всегда сопровождается потерей энергии.

Никакая оптическая система не позволяет получить на поверхности освещаемого объекта мощность излучения большую, чем в самом источнике света.

3)Принцип работы лазера.

Возбуждённый атом может самопроизвольно (спонтанно) перейти на один из нижележащих уровней энергии, излучив при этом квант света (см. Атом). Световые волны, излучаемые нагретыми телами, формируются именно в результате таких спонтанных переходов атомов и молекул. Спонтанное излучение различных атомов некогерентно.

Однако, помимо спонтанного испускания, существуют излучательные акты др. рода. При распространении в среде световой волны с частотой v, соответствующей разности каких-либо двух энергетических уровней E1, E2 атомов или молекул среды (hn = E2 – E1, где h – Планка постоянная), к спонтанному испусканию частиц добавляются др. радиационные процессы.

Атомы, находящиеся на нижнем энергетическом уровне E1, в результате поглощения квантов света с энергией hn переходят на уровень E2 (рис. 2, а).

Число таких переходов пропорционально r (n) N1, где r (n) – спектральная плотность излучения в эрг/см3, N1 – концентрация атомов, находящихся на уровне E1 (населённость уровня).

Атомы, находящиеся на верхнем энергетическом уровне E2, под действием квантов hn вынужденно переходят на уровень E1 (рис. 2, б). Число таких переходов пропорционально r (n) N2, где N2 – концентрация атомов на уровне E2. В результате переходов E1 ? E2 волна теряет энергию, ослабляется.

В результате же переходов E2 ? E1 световая волна усиливается. Результирующее изменение энергии световой волны определяется разностью (N2 – N1). В условиях термодинамического равновесия населённость нижнего уровня N1 всегда больше населённости верхнего N2. Поэтому волна теряет больше энергии, чем приобретает, т. е. имеет место поглощение света.

Важно

Однако в некоторых специальных случаях оказывается возможным создать такие условия, когда возникает инверсия населённостей уровней E1 и E2, при которой N2 > N1. При этом вынужденные переходы E2 ? E1 преобладают и поставляют в световую волну больше энергии, чем теряется в результате переходов E1 ? E2. Световая волна в этом случае не ослабляется, а усиливается.

4)Виды лазеров.

Рубиновый лазер работает в импульсном режиме. Существуют также лазеры непрерывно­го действия.

В газовых лазерах этого типа рабочим веществом является, газ. Атомы рабочего вещества возбуж­даются электрическим разрядом.

Применяются и полупроводнико­вые лазеры непрерывного действия. Они созданы впервые в нашей стра­не. В них энергия для излучения заимствуется от электрического тока.

Созданы очень мощные газоди­намические лазеры непрерывного действия на сотни киловатт. В этих лазерах «перенаселенность» верхних энергетических уровней создается ! при расширении и адиабатном охлаждении сверхзвуковых газовых потоков, нагретых до нескольких тысяч кельвин.

5)Применение лазеров.

Лазеры используют во многих сферах деятельности. Ведь лазер это удивительный источник света. Лазеры, конечно, при желании могут применяться в качестве экстравагантных светильников. Однако использовать лазерный луч в целях освещения  нерационально.

Большие возможности открываются перед лазерной техникой в биологии и медицине. Лазерный луч применяется не только в хирургии (например, при операциях на сетчатке глаза) как скальпель, но и в терапии.

Интенсивно развиваются методы лазерной локации и связи. Локация Луны с помощью рубиновых Л. и спец. уголковых отражателей, доставленных на Луну, позволила увеличить точность измерения расстояний Земля – Луна до нескольких см.

Получены обнадёживающие результаты в направленном стимулировании химических реакций. С помощью Л. можно селективно возбуждать одно из собственных колебаний молекулы. Оказалось, что при этом молекулы способны вступать в реакции, которые нельзя или затруднительно стимулировать обычным нагревом.

      С помощью лазерной техники интенсивно разрабатываются оптические методы обработки передачи и хранения информации, методы голографической записи информации, цветное проекционное телевидение.

Совет

     За последнее время в России и за рубежом были проведены обширные исследования в области квантовой электроники. созданы разнообразные лазеры, а также приборы , основанные на их использовании.

Лазеры теперь применяются в  локации и в связи, в космосе и на земле, в медицине и строительстве, в вычислительной технике и промышленности, в военной технике.

Появилось новое научное направление – голография, становление и развитие которой также немыслимо без лазеров.

      Создание лазеров- пример того, как развитие фундаментальной науки приводит к гигантскому прогрессу в самых различных областях техники и технологии.

Министерство    общего  образования

Российской  Федерации

РЕФЕРАТ НА ТЕМУ: ЛАЗЕРЫ. ОСНОВЫ  УСТРОЙСТВА  И   ИХ

ПРИМЕНЕНИЕ

                                                   Выполнил ученик Миронов Евгений. 11 «б» класс. Предмет Физика. Преподаватель

___________________________________

Сива 2003 год.

Источник: https://www.BiblioFond.ru/view.aspx?id=41887

Принцип работы лазера

Главная Квантовая физика » Файлы » Методика выполнения лабораторных работ по физике » Квантовая физика [ Добавить материал ]

7.2.2. Принцип работы лазера

Для начала рекомендуется изучить теоретические сведения о спонтанных и индуцированных переходах.

Для работы лазера необходимы некоторые важные условия. Прежде всего это относится к энергетическому спектру излучающего вещества, называемого активным.По положению двух энергетических уровней, между которыми осуществляется рабочий переход атомов активного вещества, лазеры подразделяются на трёхуровневых (рис. 7.2) и четырёхуровневые (рис. 7.

3).В трёхуровневой системе, характерной для оптического квантового генератора (ОКГ) на рубине, часть атомов активного вещества за счет энергии накачки переводится из основного состояния в широкую полосу 3, затем атомы безизлучательно переходят на метастабильный уровень 2, накапливаясь на нем.

Обратите внимание

Если мощность накачки достаточно велика, то между уровнями 2 и 1 создается инверсия заселенности.

В четырехуровневой системе (рис. 7.

3) конечный (нижний) уровень 4 рабочего перехода расположен достаточно далеко от основного уровня (Е4 ≥ 8 kT), в связи с чем его населённость меньше населённости основного уровня, поскольку число частиц с энергией En определяется из распределения Больцмана

(7.7)где Т – абсолютная температура системы, zc – нормирующий множитель, N – полное число частиц (∑(Nm) = N ).Поэтому инверсия населенности уровня 2 по отношению к уровню 4 может быть достигнута при меньших мощностях накачки.К активным веществам ОКГ предъявляются следующие требования:

  • ширина спектральной линии изучения атома должна быть как можно уже;
  • спектральная область возбуждения (полоса поглощения – уровни 3) должна быть как можно шире и совпадать с максимумом спектрального распределения источника накачки;
  • время жизни возбужденного атома в метастабильном состоянии должно быть как можно большим и, по крайней мере, должно превышать время жизни атома на нижнем энергетическом уровне.

Чем больше времени жизни возбужденного атома в метастабильном состоянии, тем меньше будет спонтанных (самопроизвольных) переходов и тем легче создать инверсную населенность. Если время жизни возбужденного атома на нижнем уровне больше времени жизни на верхнем энергетическом уровне, инверсия населенности не может быть получена, так как возбужденные частицы будут не на верхнем, а на нижнем энергетическом уровне рабочего переходе.Накачка (передача энергия атомами и перевод их в возбужденное состояние) может осуществиться в лазерах различными способами. Наиболее применимы:

  • оптическая накачка, когда кванты света необходимой частоты передают энергию атомам;
  • передача энергии при развитии газового разряда, когда электроны при соударениях передают свою энергию атомами (соударения первого рода);
  • накачка за счет мощного высокочастотного поля и ряд других.

В газовых лазерах очень важным является передача энергии одних атомов другим за счет неупругих столкновений (соударений второго рода). Процесс соударения такого рода схематически можно выразить в виде
B* + A → A* + B + ∆ E
(7.8)где А и В – атомы, а звездочка показывает, что атом находится в возбужденном состоянии; ∆Е – дефект энергии.Энергия возбуждения передается от состояния В* одного атома состоянию А* другого. Происходят следующие процессы, сопровождающиеся обменом энергии между частицами.

1) Электронные соударения (электронные удары первого рода), при которых происходит возбуждение атомов А и В и заселение уровней E3B ,E3A, E2A (рис. 7.4).

Заселенность уровня E2A является «паразитной», уменьшающей инверсию населенности.

2) Неупругие столкновения основного (А) и вспомогательного (В) газов. При этом атомы газа В отдают энергию возбуждения атомам основного газа А. Очевидно, имеет место и обратный процесс возбуждения газа В атомами А, уменьшающий населенность уровня E3A. Эффективность этих процессов зависит от «дефекта энергии» уровней E3A и E3B и определяется условием

∆ EBA = E3B – E3A ≤ k To
(7.9)поскольку она убывает по закону exp ( -kTo ).
3) Спонтанное излучение с уровня E3A на уровень E1A ухудшает условие создания инверсии населенности; спонтанное излучение с уровня E2A обеспечивает «сток» отработанных частиц и является полезным.

4) Диффузия электронов и атомов при столкновении их со стенками сосуда, заключающего газовую смесь. Этот процесс в ряде случаев необходим (при мета-стабильном уровне E2A) и повышение его эффективности достигается уменьшением диаметра газоразрядных трубок.

Данные механизмы возбуждения в двухкомнатной газовой смеси позволяют сформулировать требования к основному и вспомогательному газам:

  1. Уровни E2A и E3B должны удовлетворять условию (7.9).
  2. Концентрация атомов вспомогательного газа должна значительно превышать концентрацию атомов основного газа (как правило в 5-10 раз), что позволяет обеспечивать преимущественную передачу энергии возбуждения именно основному газу.

Источник: http://fevt.ru/load/rabota_lazera/55-1-0-230

Ссылка на основную публикацию